First Connectomics Challenge: From Imaging to Connectivity

نویسندگان

  • Javier G. Orlandi
  • Bisakha Ray
  • Demian Battaglia
  • Isabelle Guyon
  • Vincent Lemaire
  • Mehreen Saeed
  • Alexander R. Statnikov
  • Olav Stetter
  • Jordi Soriano
چکیده

We organized a Challenge to unravel the connectivity of simulated neuronal networks. The provided data was solely based on fluorescence time series of spontaneous activity in a network constituted by 1000 neurons. The task of the participants was to compute the effective connectivity between neurons, with the goal to reconstruct as accurately as possible the ground truth topology of the network. The procured dataset is similar to the one measured in in vivo and in vitro recordings of calcium fluorescence imaging, and therefore the algorithms developed by the participants may largely contribute in the future to unravel major topological features of living neuronal networks from just the analysis of recorded data, and without the need of slow, painstaking experimental connectivity labeling methods. Among 143 entrants, 16 teams participated in the final round of the challenge to compete for prizes. The winners significantly outperformed the baseline method provided by the organizers. To measure influences between neurons the participants used an array of diverse ∗ The two first authors contributed equally. c © 2015 J.G. Orlandi, B. Ray, D. Battaglia, I. Guyon, V. Lemaire, M. Saeed, A. Statnikov, O. Stetter & J. Soriano. Orlandi Ray Battaglia Guyon Lemaire Saeed Statnikov Stetter Soriano methods, including transfer entropy, regression algorithms, correlation, deep learning, and network deconvolution. The development of “connectivity reconstruction” techniques is a major step in brain science, with many ramifications in the comprehension of neuronal computation, as well as the understanding of network dysfunctions in neuropathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

, PhDa

One of the most fascinating challenges in neuroscience is the reconstruction of the connectivity map of the brain. Recent years have seen a rapid expansion in the field of connectomics, whose aim is to trace this map and understand its relationship with neural computation. Many different approaches, ranging from electron and optical microscopy to magnetic resonance imaging, have been proposed t...

متن کامل

The future of the human connectome

The opportunity to explore the human connectome using cutting-edge neuroimaging methods has elicited widespread interest. How far will the field be able to progress in deciphering long-distance connectivity patterns and in relating differences in connectivity to phenotypic characteristics in health and disease? We discuss the daunting nature of this challenge in relation to specific complexitie...

متن کامل

Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution i...

متن کامل

Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers.

Physical organization of the nervous system is a topic of perpetual interest in neuroscience. Despite significant achievements here in the past, many details of the nervous system organization and its role in animals' behavior remain obscure, while the problem of complete connectivity reconstructions has recently re-emerged as one of the major directions in neuroscience research (i.e. connectom...

متن کامل

Neural Connectivity Reconstruction from Calcium Imaging Signal using Random Forest with Topological Features

Connectomics is becoming an increasingly popular area of research. With the recent advances in optical imaging of the neural activity tens of thousands of neurons can be monitored simultaneously. In this paper we present a method of incorporating topological knowledge inside data representation for Random Forest classifier in order to reconstruct the neural connections from patterns of their ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014